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SUMMARY 

The conventional integral approach is very well established in probabilistic seismic hazard 

assessment (PSHA). However, Monte-Carlo (MC) simulations can become an efficient and 

flexible alternative against conventional PSHA when more complicated factors (e.g., spatial 

correlation of ground shaking) are involved. This study aims at showing the implementation of 

MC simulation techniques for computing the annual exceedance rates of dynamic ground-

motion intensity measures (GMIMs) (e.g., peak ground acceleration, PGA and spectral 

acceleration, Sa). We use multi-scale random fields (MSRFs) technique to incorporate spatial 

correlation and near-fault directivity while generating MC simulations to assess the 

probabilistic seismic hazard of dynamic GMIMs. Our approach is capable of producing 

conditional hazard curves as well. We show various examples to illustrate the potential use of 

the proposed procedures in the hazard and risk assessment of geographically distributed 

structural systems. 

 

1. INTRODUCTION 

The consideration of site-to-site variation (spatial correlation) in dynamic GMIMs (e.g., PGA, 

Sa) is important for realistic probabilistic seismic hazard and risk assessment of geographically 

distributed building portfolios and lifeline systems. The interdependency between the GMIMs 

(cross-correlation) is also important for such structural systems because some of their 

components are vulnerable to the conditional occurrence of multiple GMIMs. Apart from these 

considerations, the proper amplitude estimations of dynamic GMIMs is crucial for 

geographically distributed buildings or lifelines located in the close proximity to fault segments.  

Studies to model spatial correlation (e.g., [1-6]), cross-correlation (e.g., [7-14]), combined 

effects of spatial- and cross-correlation (e.g., [3, 15]) as well as near-fault effects on dynamic 

GMIMs ([16-21]) are abundant in the literature. There are also several papers showing their 

implementation by using conventional PSHA [22] (e.g., [18, 23–25]). Alternative to 

conventional PSHA, Monte Carlo (MC) simulation techniques have become appealing in 

probabilistic hazard calculations as they provide flexibility, transparency and robustness [26] 

while considering the above complex features in earthquake phenomenon (e.g., [27–29]). 

Monte Carlo simulations are also used in probabilistic risk assessment of geographically 

distributed systems (e.g., [26, 30–33]). Crowley and Bommer [26] demonstrated that the use of 

MC simulations leads to lesser conservatism with respect to conventional probabilistic risk
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 assessment at multiple sites as they could easily adopt the spatial correlation in GMIMs. 

Sokolov and Wenzel [30, 31] used MC simulations to emphasize the significance of proper 

modeling in between-earthquake and site-to-site (spatial) correlations for seismic loss 

estimation of distributed portfolios. Based on MC simulations, Jayaram and Baker [34] 

proposed an efficient simulation-based framework for developing a small but stochastically 

representative catalog of earthquake ground-motion intensity maps that can be used for lifeline 

risk assessment. Wang et al. [35] used MC simulations to assess the seismic risk of the water 

supply systems by identifying the most critical links that would affect their seismic performance. 

In a similar manner, Esposito et al. [36] assessed the performance of gas distribution network 

of the L’Aquila city both for dynamic GMIMs and fault displacements by applying MC 

simulations. Recently, Weatherill et al. [37] explored the effect of spatially cross-correlated 

random fields of different GMIMs on seismic risk analysis for the Tuscany region in Italy. 

This study implements MC simulation technique together with the multi-scale random fields 

(MSRFs) approach [38] to account for spatial correlation in estimating the joint hazard of 

dynamic GMIMs for geographically distributed structural systems. The proposed approach 

differs from other MC-based seismic hazard procedures that generate normally distributed and 

spatially correlated GMIMs via Cholesky decomposition (e.g., [37]). As indicated above we 

propagate its application into PSHA as an alternative to Cholesky decomposition technique. At 

the expense of increased computational burden (which is the case in all MC-based methods), 

MSRFs technique can account for spatial correlation at different precision levels in order to 

fine-tune the accuracy of hazard curves at the mesh grids critical to design and risk assessment 

of geographically distributed structures. Using particular properties of MSRFs technique and 

flexibility provided by MC simulations, we further implemented the near-fault directivity 

effects on the hazard computations. The paper first describes the PSHA of dynamic GMIMs 

through the application of MC-based MSRFs approach. This part is followed by demonstrating 

several examples to discuss the strengths of the proposed procedures for the hazard assessment 

of geographically distributed building portfolios and lifeline systems. 

 

2. MONTE-CARLO BASED MULTI-SCALE RANDOM FIELDS FOR DYNAMIC GMIMs 

The multi-scale random fields (MSRFs) hierarchically characterize the randomness of a 

physical process at different resolution levels. We use this concept together with MC 

simulations to generate spatially correlated intra-event residuals by following Chen Q et al. [38] 

who studied the mechanical behavior of heterogeneous soil medium under different levels of 

uncertainty. The spatially correlated intra-event residuals leads to the sampling of spatially 

correlated GMIMs over the region of interest. MSRFs method is based on regular grids of cells. 

The residuals as well as the GMIMs are sampled at the centroids of the cells. Therefore, the 

separation distances used in the spatial correlations are centroidal distances. The sampled 

GMIMs can account for near-fault directivity effects depending on the relative locations of the 

sites with respect to the fault. Our procedure also considers cross-correlation of sampled 

primary and secondary GMIMs to assess conditional hazard.  

We implement two scale levels (coarse-scale and fine-scale) while generating spatially 

correlated intra-event residuals. Figure 1 illustrates the coarse-scale and fine-scale random 

fields (coarse-scale and fine-scale cells). The center-to-center distances between the cells are 

used in spatial correlation as the sampled residuals are located at the mid points of the grids. 

The sampled intra-event residual in a coarse-scale cell is the average of sampled intra-event 
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residuals of fine-scale cells within the corresponding coarse-scale cell. This relationship is 

given in Equation 1 where Z stands for the sampled intra-event residual. The indices “1” and 

“2” designate coarse-scale and fine-scale cells, respectively. n is the number of fine-scale cells 

within the coarse-scale cell and b represents the index number of the coarse-scale cell. 

1, 2,1

1 n

b bii
Z Z

n 
       (1) 

The intra-event residuals are sampled via MC simulation and we make use of the intra-event 

standard deviation of the GMPE used in the entire process. The intra-event standard deviation 

accounts for the variability in sampled intra-event residuals. Spatial correlation is considered 

while sampling the intra-event residuals to mimic the interdependency of generated GMIMs at 

closely spaced sites (cells) because the waveform radiation patterns are coherent at close sites 

under a given earthquake. The intra-event residual sampling starts from coarse-scale fields and 

extends into fine-scale as well as coarse-to-fine scale cells through sequential conditional 

simulation. The sequential conditional simulation transfers the knowledge of previously 

sampled intra-event residuals to the next sampled intra-event residual. 

 

Figure 1. Graphical representation of coarse-scale and fine scale cells. The solid diagonal line is 

the fault. The area enclosing the fault segment is divided into m×n coarse-scale cells. Some of the 

coarse-scale cells are further refined into ds×ds fine scale cells. The right panel is the close-up 

view of 4 coarse scale cells located in the vicinity of the fault and, for illustration purposes, we 

show one of these coarse scale cells refined into 4×4 fine-scale cells 

Although MC-based intra-event residual sampling starts at coarse-scale level, the sampling 

distributions of coarse-scale and fine-scale cells are directly related to each other. The intra-

event residual distribution at fine-scale level is normal with zero mean and standard deviation 

Z2. Z2 is the intra-event standard deviation of the pertaining GMPE used in the calculations. 

Equation (1) leads to the below expressions to compute the mean (Z1) and standard deviation 

(Z1) of normally distributed intra-event residuals for coarse-scale cells. 
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In Equation (3), ρZ2i,Z2j is the spatial correlation coefficient between two fine-scale cells that is 

controlled by the separation distance between them. As discussed in the introduction, there are 

handful spatial correlation models in the literature for calculating ρZ2i,Z2j (e.g.,[3]). Z2i and Z2j 
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are the intra-event residual standard deviations of the ith and jth fine-scale cells, respectively. 

Z is the sampled intra-event residual, n is the number of fine-scale cells in the corresponding 

coarse-scale cell and indices 1 and 2 indicate coarse-scale and fine-scale cells, respectively. E 

denotes the expected value operator. The spatial correlation coefficient between two fine-scale 

cells, ρZ2i,Z2j, is used to derive spatial correlation coefficients for coarse-to-coarse scale and 

coarse-to-fine scale cells. These expressions are given in Equations (4) and (5) and are used to 

sample intra-event residuals by sequential conditional simulation. 
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In the above expressions, Z1a,Z1b and Z2,Z1a refer to coarse-to-coarse scale and fine-to-coarse 

scale correlation coefficients, respectively. The parameters a and b indicate the index numbers 

of coarse-scale cells. Equation (6) shows the joint distribution expression used in the spatially 

correlated intra-event sampling by conditional sequential simulation.  
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The subscripts n and p describe the “next” and “previously” generated intra-event residuals, 

respectively in Equation (6). The vector Z=[Zn Zp] follows a joint normal distribution with a 

vector of zero mean and covariance matrix, ∑. The distribution of the next sampled data (Zn) is 

a univariate normal distribution conditioned on the previously sampled realizations (Zp) that is 

given in Equations (7) and (8). 

 1 2 1| ~ ,n p np pp np pp pnZ N         Z z z        (7) 

,COV ,
i j i ji j Z Z Z ZZ Z        

     (8) 

While sampling the intra-event residuals of coarse-scale cells, the covariance matrix (∑) given 

in Equation (8) considers the spatial correlation between two coarse-scale cells as shown in 

Equation (4). The corresponding intra-event standard deviations Zi and Zj can be calculated 

from Equation (3). If the intra-event residual sampling is for fine-scale cells, the covariance 

matrix considers the spatial correlation between two fine-scale cells (ρZ2i,Z2j), two coarse-scale 

cells (Equation 4) as well as one coarse-scale cell and one fine-scale cell (Equation 5). 
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Accordingly, the intra-event standard deviations in Eq. (8) would correspond to one of these 

three cases for the intra-event residual sampling of fine scale cells. These concepts are further 

clarified in the following paragraphs. 

 

Figure 2. Illustrative example for intra-event residual sampling at coarse-scale level 

Figure 2 illustrates the generation of intra-event residuals at coarse-scale level. The area of 

interest is divided into a number of coarse-scale cells and indexed from left-to-right and bottom-

to-top as given in the leftmost side of Figure 2. The sequential indices are resorted in a random 

manner to generate a new sequence of indices (middle part in Figure 2). Following the new 

order of randomized coarse-scale cells, the intra-event residuals are generated for each cell at 

the coarse-scale level by using the sequential conditional simulation procedure as summarized 

in Equations (6), (7) and (8). The intra-event residual of first coarse-scale cell (Z3 in the 

illustrative example as given in the rightmost part in Figure 2) is sampled as a univariate normal 

distribution. The intra-event residual of coarse-scale cell following the first one (Z5 in Figure 2) 

is sampled by using the sampled intra-event residual of first coarse-cell (Z3). In essence, while 

generating the intra-event residual of the “next” cell, Zn, the previously generated intra-event 

residuals become the entries in Zp. The procedure is recursively repeated until all the intra-event 

residuals in the coarse-scale cells are sampled. 

The intra-event residual simulation of coarse-scale cells is followed by a similar set of 

simulations at fine-scale level. This process is illustrated in Figure 3 as the continuation of the 

example case in Figure 2. Although the entire coarse-scale cells can be refined into fine-scale 

cells to generate the intra-event residuals at the fine-scale level, this process may bring 

computational burden depending on the size of the area of interest, the number of coarse-scale 

cells as well as the level of mesh gridding at the fine-scale level (i.e., the number of fine-scale 

cells in coarse-scale cells). We prefer pre-defining the coarse-scale cells to be refined into fine-

scale cells in our procedure. The level of precision in observing the near-fault effects on hazard 

computations or requirements to be fulfilled in the development of conditional hazard curves 

can play a role on the number of pre-defined coarse-scale cells for fine-scale mesh gridding. 

The order of coarse-scale cells to be refined into fine-scale cells should follow the random 

indexing used while generating the intra-event residuals of coarse-scale cells. In the follow-up 

example given in Figure 3, the coarse-scale cells indexed as #2 and #3 are chosen to be refined 

into fine-scale cells (Figure 3.a). Note that the random coarse-scale cell indexing given in 

Figure 2 indicates that conditional sequential simulation for fine-scale cells should start from 

coarse-scale cell #3 and should be followed by refining the coarse-scale cell #2. Similar to the 

indexing technique given in Figure 2, the fine-scale cells in the #2 and #3 coarse-scale cells are 

numbered from left-to-right and from bottom-to-top as shown in Figure 3.a. For this illustrative 

case, each coarse-scale cell is mesh gridded into 2×2 fine-scale cells. The fine-scale cell indices 

are then randomized (leftmost part in Figure 3.b) to start sequential conditional simulation. For 

example, the randomized indices of fine-scale cells in the #3 coarse-scale cell are [4, 2, 3, 1]. 
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As presented in the illustrative case in Figure 3, the intra-event residual of the #4 fine-scale cell 

in the #3 coarse-scale cell (Z3,4) is sampled by using Equations (6) to (8) where Zp contains all 

previously sampled coarse-scale cell intra-event residuals. The intra-event residual sampling 

Z3,2, Z3,3 and Z3,1 is followed after Z3,4. After each realization, the corresponding sampled intra-

event residual is an entry in Zp. Upon the sampling of all intra-event residuals in the fine-scale 

cells of a coarse-scale cell (e.g., #3 coarse-scale cell in Figure 3), it is removed from the 

previously sampled realizations vector, Zp. The entire process is repeated until the sampling of 

all intra-event residuals at fine-scale level is finished in the pre-defined coarse-scale random 

fields. The following section extends our approach to include near-fault forward directivity 

effects on the spatially correlated dynamic GMIMs generated via MC-based MSRFs approach. 

 

Figure 3. Generation of intra-event residuals for fine-scale cells: (a) pre-selected coarse-scale 

cells for refining into fine-scale cells (designated by red boxes) and numbering of fine-scale 

cells in these coarse-scale cells, (b) sequential conditional simulation process 

We note that the MSRFs approach sample the spatially correlated residuals and GMIMs at the 

centroids of the grids. Therefore, the computation of GMIMs at locations within the grids 

require additional computational effort and assumptions. One can assume that the central 

GMIMs apply uniformly within the grids that imply a perfect spatial correlation within the cell. 

The accuracy of hazard computed under this assumption is related to the grid size: smaller grid 

sizes would increase the accuracy of hazard at sites far from the centroids of the grids. Smaller 

grids would also allow the expert to use a proper interpolation method (inverse distance 

weighting, krigging, etc.) to interpolate the central GMIMs for other sites within the grids. 

Alternatively, one can use grid-to-grid correlation and grid variance [39] instead of point-to-

point correlation or GMPE variance as presented in Equations (3) to (5). Our analysis from the 

implementation of Stafford’s [39] grid variance expression indicate that a grid size of 1km  

1km would yield almost equal point and grid variances. Thus, the use of such a grid dimension 

for the computation of central hazard in a cell would resemble the hazard for sites anywhere 

within that cell. Needless to say these alternative methods to estimate GMIM distribution at 

sites other than the centers of the cells would increase the computational burden that is also 

valid for any MC-based probabilistic hazard assessment method. In their paper, Bal et al. [33] 

discuss the trade-offs between grid size, hazard accuracy and computer time that highlight 

important points for an efficient and accurate computation in MC-based hazard studies. The 

case studies in this paper only consider the hazard computed at the center of the cells. 

2.1 Near-fault directivity effects 

When the rupture and slip direction relative to a site coincide and a significant portion of the 

fault ruptures towards the site, the ground motion can exhibit the effects of forward directivity 

(a) (b) 
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(short duration ground motions that consist of one or more pulses). Most of the conventional 

GMPEs do not model forward directivity so seismic hazard assessment via conventional 

ground-motion characterization may fail to estimate the near-fault ground-motion amplitudes 

for future earthquakes. We implemented the near-fault directivity model of Shahi and Baker 

[18] to account for the likely change of ground-motion amplitudes in the vicinity of faults. The 

Shahi and Baker model predicts the probability of pulse-like ground motions occurring at a site 

by considering the orientations of induced seismic waveforms relative to the strike of the fault. 

It amplifies the spectral ordinates in the vicinity of pulse period, Tp, by empirically calibrating 

the median and standard deviations of ground-motion estimates from conventional GMPEs. 

Strictly speaking the Shahi and Baker [18] model requires a spatial correlation function that is 

explicitly developed for near-fault effects. The use of a spatial correlation function that 

disregards near-fault effects may mask the actual spatial distribution of ground motion in the 

vicinity of the fault. To our knowledge, there is no such spatial correlation function that 

explicitly accounts for the near-fault effects. The reader should consider this fact while 

implementing the proposed approach for the assessment of hazard in the close proximity of 

faults. 

Figure 4 shows the overall algorithm for incorporating the near-fault directivity effects to the 

spatially correlated GMIMs generated via MSRFs approach. In essence, we modify the intra-

event standard deviation of the conventional GMPE to sample the spatially correlated intra-

event residuals for sites (coarse and fine-scale cells) located in the near-fault region. 

Considering Tp, we also modify the median estimates of GMIMs for these sites obtained from 

the conventional GMPE. For each realization of MC simulations (i.e., for each scenario event), 

we determine the probability of observing a pulse at a certain orientation  [P(pulse at |pulse)] 

for the mid-point of the cells that are located in the vicinity of fault. P(pulse at |pulse) is related 

to the relative location of the centroid of the cell with respect to the fault strike. We sample this 

value using binomial distribution. If the forward directivity is more likely to occur (Pulse case), 

we sample Tp assuming log-normal distribution. The value of sampled Tp leads to the calibration 

of median ground motion and associated standard deviation of conventional GMPE to generate 

spatially correlated random fields. The Shahi and Baker [18] model disregards the calibration 

of median ground motion and associated standard deviation if Tp < 0.6s. If no pulse case is 

dominant, then depending on the spectral period (T) of GMIM, this model either uses the 

median ground-motion estimates and standard deviation of conventional GMPE (T ≤ 1.0s case) 

or modifies these parameters. The calibrated standard deviations and median ground-motion 

estimates are used for generating spatially correlated GMIMs at coarse- and fine-scale levels. 

As the MSRFs method considers the centers of the cells for sampling GMIMs, the distribution 

of GMIMs due to near-fault effects would be more accurate with smaller grid sizes at the 

expense of increased computational burden. 
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Figure 4. Algorithm for considering near-fault forward directivity effects on the spatially 

correlated GMIMs generated from MSRFs approach. lnGMIM,pulse is the calibrated mean 

GMIM in logarithmic space due to pulse-like ground motions (forward directivity). lnAF is 

the logarithmic calibration factor for forward directivity effects and lnGMIM,gm is the mean 

GMIM in logarithmic space computed from conventional GMPE. In a similar manner, 

lnGMIM,pulse and lnGMIM,gm are the calibrated and original standard deviations of conventional 

GMPE, respectively. Rf is the calibration factor for standard deviation for forward directivity 

effects. For non-pulse case, lnGMIM,nonpulse is the calibrated mean GMIM in logarithmic space 

due to non-pulse-like ground motions. lnAF and lnGMIM,nonpulse are the logarithmic calibration 

factor and standard deviation of GMPE for backward directivity effects, respectively. 

The Shahi and Baker model provides calibration factors for the total standard deviation of a 

conventional GMPE that can be used for generating total residuals. Since the MSRFs approach 

requires intra-event standard deviation (σε,gm) to sample intra-event residuals, we modify the 

calibration factor proposed in Shahi and Baker as given in Equations (9) and (10). We assume 

that the inter-event standard deviation (ση,gm) does not change for any given simulated scenario 

earthquake. This assumption is rational as inter-event standard deviation is constant for a 

specific earthquake. The modified calibration factor is indicated as Rfε, pulse in the derivations 

and replaces Rf (see the last row of “Pulse” case in Figure 4) while considering the near-fault 

directivity effects in the MSRFs approach. Note that ση,gm and ση,pulse are equal to each other in 

the derivations under constant inter-event standard deviation assumption. 
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The spatial correlation expression, ρη,gm, ([30, 40]) in Equation (11) can be used together with 

Equation (10) to express Rfε, pulse as given in Equation (12).  
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2.2 Development of hazard curves from MC-based MSRFs approach 

We generate a suite of synthetic earthquake catalogs for a given fault located in the area of 

interest. The synthetic catalogs are based on a specific earthquake recurrence model that 

represents the temporal distribution of seismic activity in the considered fault for a certain 

catalog period. In essence, simulating a suite of synthetic earthquake catalogs having magnitude 

frequency distributions similar to the one dictated by the earthquake recurrence model and 

covering a long time span sufficiently addresses the low annual exceedance rates of earthquakes 

originating from the considered fault. This approach has been used by Musson [28] and 

Assatourias and Atkinson [29] in MC-based PSHA. Musson [28] indicated that a suite of 1000 

synthetic catalogs, each spanning a 100-year time interval (i.e., a total duration of 100,000 years) 

would yield reliable estimates of GMIMs for annual exceedance rates of 10-3. When the total 

catalog duration is extended to 1,000,000 years (i.e., 10000 synthetic catalog, each covering 

100-year period), the accurate annual exceedance rates for GMIMs become 10-4. Similar 

findings are also published by Assatourias and Atkinson [29] as well as Crowley and Bommer 

[26]. The latter paper considers all stochastic events in a single earthquake catalog with a very 

long time interval.  

Our synthetic catalog simulations assume Poissonian process for earthquake occurrence. The 

earthquakes generated in each artificial catalog are assumed to occur randomly on the fault with 

a uniform distribution along the fault strike and within the seismogenic depth. For each scenario 

event in the artificial earthquake catalogs, we implement MSRFs approach to sample spatially 

correlated intra-event residuals at coarse- and fine-scale levels. The intra-event residuals are 

sampled at the centers of coarse-scale and fine-scale cells and consider the near-fault directivity 

effects depending on the relative location of the site (centroid of the cell) with respect to fault 

geometry. We obtain the total residual at each cell by considering the contribution of inter-

event residual specific to the scenario event. The inter-event residuals are computed from the 

inter-event standard deviation of the GMPE used in the computations. They are sampled as 

normal varieties in our procedure. The logarithmic mean (median) predictions of GMIMs that 

are computed at the centers of coarse-scale and fine-scale cells are superposed with the total 

residuals to obtain the spatially correlated GMIM distribution within the entire random field. 

As in the case of intra-event residual sampling, the median GMIM predictions are modified for 

near-fault directivity effects depending on the center point of the cell and fault locations at 

coarse- and fine-scale levels. 

The procedure described in the above paragraph is itemized in the following steps. 

1. Define the area of interest together with the fault segment that affects the seismicity in the 

entire area. Subdivide the area into coarse-scale and fine-scale cells. The decision on the cell 

resolution (size) depends on many factors as MSRFs approach sample the GMIMs at the 

centroids of the cells. The clustering of geographically distributed portfolio and precision 

required to address the near-fault directivity effects are among the important factors that 

affect the cell size. 

2. Chose a GMPE that is suitable for the tectonic environment as well as the seismicity in the 

area of interest. Equation (13) shows the essential components of a GMPE that are of 

relevance to our discussions. 

            ln(𝐺𝑀𝐼𝑀𝑖,𝑗) = 𝑓(𝑀𝑖, 𝑅𝑖,𝑗, 𝜽) + 𝜂𝑖 + 𝜀𝑖,𝑗;        𝑖 = 1, … . 𝑚, 𝑗 = 1, … 𝑛  (13) 
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The first term on the left-hand-side predicts the logarithmic mean of the GMIMi,j of interest 

for the ith earthquake and jth site (designated as lnGMIM,gm in the previous discussions). Mi 

and Ri,j are the magnitude and source-to-site distance terms of the ith earthquake and the jth 

site (centroid of the cell). The vector  contains other seismological estimator parameters to 

define, for example, site conditions at the jth site and style-of-faulting specific to the ith 

earthquake. The random varieties i and i,j represent the inter-event and intra-event 

variability in the predicted GMIMi,j, respectively. They are normally distributed with inter-

event (,gm) and intra-event (,gm) standard deviations. Note that m and n in Equation (13), 

represent the total number of simulations and sites (cells) at coarse- and fine-scale levels, 

respectively. The total number of simulations is related to the number of earthquakes in the 

artificially generated earthquake catalogs. 

3. Generate a suite of earthquake catalogs by following the properties of earthquake recurrence 

specific to the fault. The number of earthquake catalogs should be sufficient enough to 

consider the occurrence of rare events (low annual exceedance rates) for proper temporal 

distribution of earthquakes. Currently, the spatial distribution of earthquakes is defined by 

the uniformly distributed rupture planes and the hypocentral location of each earthquake is 

assumed to be at the center of the ruptured surface. The multi-segment or bending ruptures 

are disregarded in the implementation of the proposed approach. 

4. For scenario event i, sample spatially correlated i,j using MSRFs approach. Make necessary 

calibrations for near-fault directivity effects at coarse-scale and fine-scale levels whenever 

necessary.  

5. For scenario event i, compute the logarithmic mean of GMIMi,j (lnGMIM,gm) at coarse-scale 

and fine-scale levels. Make necessary calibrations for near-fault directivity effects (i.e., 

modify GMIMi,j either for lnGMIM,pulse or lnGMIM,nonpulse) depending on the location of the 

centroid of the cell with respect to the fault, Tp and spectral period (T) of GMIMi,j.  

6. For scenario event i, compute i. 

7. Combine the spatially correlated i,j, GMIMi,j and i using Equation (13). The product is the 

spatially correlated GMIMi,j in the logarithmic domain at coarse- and fine-scale levels. 

8. Repeat steps 4 to 7 for the simulated suite of earthquake catalogs and compute the hazard 

curves for the cells at coarse- and fine-scale levels from Equation (14).  

𝜆𝑗(𝐺𝑀𝐼𝑀 ≥ 𝐺𝑀𝐼𝑀0) =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑀𝐼𝑀≥𝐺𝑀𝐼𝑀0 𝑎𝑡 𝑐𝑒𝑙𝑙 𝑗 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑠× 𝑐𝑎𝑡𝑎𝑙𝑜𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
  

In Equation (14), j(GMIM ≥ GMIM0) is the mean annual rate of GMIM of interest 

exceeding a threshold level GMIM0 for cell j. Computation of j(GMIM ≥ GMIM0) for a 

range of GMIM0 will yield the hazard curve at cell j. We note that the computation of hazard 

curves by MC-based MSRFs approach is described by considering a single fault source. If 

the area of interest is exposed to k multiple faults, this procedure is repeated for the other 

faults. The mean annul exceedance rates computed from all sources are then summed up to 

obtain the final mean annual exceedance rate at cell j. 

𝜆𝑗(𝐺𝑀𝐼𝑀 ≥ 𝐺𝑀𝐼𝑀0) = ∑ 𝜆𝑙,𝑗(𝐺𝑀𝐼𝑀 ≥ 𝐺𝑀𝐼𝑀0)𝑘
𝑙=1   (15) 

The concept introduced by Equation (15) can form the basis of MC-based hazard for areal 

sources. The uncertainty in the location and orientation of faults in areal sources can be 

represented by a set of virtual fault ruptures at which MC-based simulations can be repeated 

(14) 
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for each selected orientation of the virtual fault ruptures. The total mean annual exceedance is 

computed at each cell by summing the contribution of hazard from each fictitious rupture. 

2.3 Computation of conditional hazard 

The discussions in the previous sections describe the theory and implementation of MC-based 

MSRFs approach for the seismic hazard assessment of a single GMIM. The conditional seismic 

hazard assessment, however, is sometimes more critical for geographically distributed 

structural portfolio and infrastructures because the seismic performance of some of their 

components require the consideration of multiple GMIMs. The conditional hazard assesses the 

exceedance rate of the secondary GMIMs conditioned on the occurrence of primary GMIM. 

The secondary GMIMs can be either single or multiple. In case there are multiple secondary 

GMIMs, they are called as first-secondary GMIM, second-secondary GMIM and so forth. The 

primary and secondary GMIMs are related to each other by cross-correlation coefficients, 

ρIMi,IMj (e.g., [7, 12, 13]).  

The conventional conditional hazard assessment cross-correlates each secondary GMIM with 

the primary GMIM to compute the conditional exceedance rate of the secondary GMIM [24]. 

The proposed procedure in this paper establishes a different structure: each secondary GMIM 

is cross-correlated with the primary and previously generated secondary GMIMs for the 

conditional exceedance rate of the secondary GMIMs. This way the interdependence of primary 

and secondary GMIMs is more realistically mapped on to the conditional exceedance rates. The 

procedure does not change for the primary GMIM. We generate the spatially correlated intra-

event residuals and sum them up with the independently sampled inter-event residuals to obtain 

the total residual distribution at coarse- and fine-scale levels for the entire earthquake scenarios 

of the simulated earthquake catalogs. The total residual sampling of secondary GMIMs is based 

on the total residual distribution of the primary GMIM and they are generated via sequential 

conditional simulation. The total residuals of the primary and secondary GMIMs have joint 

multivariate normal distribution as described in Equations (16) and (17). 

 
2

0
~ , ,

IMn IMn IMnp

IMp IMpn IMpp

Z
N N

     
             

0Z





 
                                      (16) 

,COV , ~
IMi IMj IMi IMjIMi IMj Z Z Z ZZ Z       

    (17) 

Equations (16) and (17) have a format similar to Equations (6) and (8), respectively. ZIMn refers 

to the next generated total residual of secondary GMIM whereas ZIMp is the vector of previously 

generated primary and secondary GMIMs. In a similar manner, σIMn is the total standard 

deviation of the next generated secondary GMIM and ∑IMnp as well as ∑IMpn are the covariance 

vectors of the previous and next GMIMs, respectively. The covariance matrix of the previously 

generated GMIMs is designated as ∑IMpp. Note that the covariance terms in Equation (16) 

contain the previously generated primary and secondary GMIMs as the proposed approach 

accounts for the interdependency between these varieties. The covariance relationship to be 

used between the secondary and primary, primary and primary as well as secondary and 

secondary GMIMs are given in Equation (17). In this expression, ρIMi,IMj is the cross-correlation 

coefficient between GMIMi and GMIMj where they can be primary and secondary, both 

secondary or both primary GMIMs. σZIMi  and σZIMi refer to the corresponding total standard 

deviations. As explained in the previous sections the standard deviation information comes 
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from the GMPE used in the overall process. The total residual distribution can further be 

expressed as a univariate normal distribution for the next generated GMIM as given in Equation 

18, which is analogous to Equation (7) used in the inter-event residual sampling of primary 

GMIM. 

 1 2 1| ~ ,IMn IMp IMnp IMpp IMn IMnp IMpp IMpnZ N         Z z z       (18) 

In Equation (18) ZIMp is the total residual realizations of the previous GMIMs. Note that we 

describe the proposed procedure to sample cross-correlated total residuals. If the considered 

GMPE provides information about the cross-correlation models of intra- and inter-event 

residuals separately, it can be modified to sample the cross-correlated intra- and inter-event 

residuals simultaneously to obtain the hazard rate of secondary GMIMs conditioned on the 

primary GMIM. 

In essence, our procedure for conditional hazard assessment uses the previously generated 

primary GMIM to sample the total residuals of secondary GMIMs. If there is a second-

secondary GMIM, its total residuals are sampled by the cross-correlations of primary, first-

secondary and second-secondary GMIMs. This process continues for the entire set of secondary 

GMIMs. The conditional hazard of each secondary GMIM is then developed by following the 

conventional approach given in Equation (14). If there is one secondary GMIM, the normal 

distribution of total residuals of the secondary GMIM will have the following mean (IM2|IM1) 

and standard deviation (IM2|IM1): 

2| 1 1, 2 2

1

IM IM IM IM IM

IM


  


      (19) 

2

2| 1 2 1, 21IM IM IM IM IM         (20) 

In Equation (19), ε is the previously sampled total residual of primary GMIM and IM1,IM2 is 

the cross-correlation coefficient between the primary and secondary GMIMs. Figure 5 

illustrates this specific case to develop the hazard curve of the secondary GMIM conditioned 

on the primary GMIM for the centroid of each cell. We note that the proposed procedure 

assumes that the correlation distances of the secondary IMs are the same as that of primary 

IM. Therefore, it is suggested to choose the primary IM as the one with larger correlation 

length with respect to the correlation distances of secondary IMs [15, 37]. 

 

Figure 5. Graphical illustration of conditional hazard assessment for one secondary GMIM 
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4. CASE STUDIES 

We present several case studies to show the implementation and implications of the theory 

discussed in this article. The case studies intend to emphasize the flexibility and robustness of 

MC-based simulations for probabilistic hazard assessment of dynamic GMIMs. We used our 

own MatlabTM codes while running the case studies. We validated our codes by comparisons 

with the results of open-source seismic hazard software, OpenQuake 

(http://www.globalquakemodel.org/openquake). The details of case studies are given in the 

following subsections. The seismic sources are represented as fault segments in the case studies 

although they could also be chosen as area sources with some modifications in the procedures 

discussed in Section 2.  

4.1 Case studies concerning dynamic GMIMs  

Figure 6 shows the results of the validation of our codes for a fictitious 90 dipping strike-slip 

fault segment of length 85 km. We consider pure-characteristic earthquake recurrence model 

with characteristic magnitudes ranging between Mw 7 and Mw 7.5 (uniformly distributed 

probabilities of occurrence between Mw 7 and Mw 7.5). The annual slip rate is assumed as 15 

mm/year for the fictitious fault. We ran 10,000 simulations with a 100-year catalog period (total 

catalog period is 1,000,000 years) to obtain reliable hazard results for mean annual exceedance 

rates of about10-4 [28]. We used Akkar et al. [41, 42] GMPE to characterize the ground-motion 

amplitudes in the hazard analyses. The same fictitious scenario is modeled in OpenQuake [43] 

using the conventional PSHA [22, 44] to validate the reliability of our computations. Our results 

and the results from OpenQuake are compared for PGA hazard curves at the randomly selected 

rock sites (see upper right corner in Figure 6 for the relative locations of sites with respect to 

the fault). The results computed by our codes agree well with OpenQuake for mean annual 

exceedance rates up to 10-4. We repeated similar verification studies for different dynamic 

GMIMs and sites with locations different than those given in this exercise. These comparisons 

advocate the reliability of our codes to discuss how different levels of complexity (directivity, 

spatial correlation, conditional hazard etc.) are treated by MC-based approaches for 

probabilistic hazard assessment. 

Similar to the above validation example, the following case studies use a 90 dipping strike-

slip fault although our codes can run hazard analyses for other styles of faulting. The fault 

length is 85 km and its seismogenic depth is taken as 15 km. The fictitious fault is assumed to 

have a slip rate of 15 mm/year producing characteristic earthquakes of Mw 7.0 to Mw 7.5. In all 

case studies, we used a 100-year catalog period and ran 10,000 simulations that results in a total 

catalog interval of 1,000,000 years. The spatial correlation model of Jayaram and Baker [4] is 

utilized for the interdependency of dynamic GMIMs at closely spaced sites. The Akkar et al. 

[41, 42] GMPE and the Akkar et al. [12, 13] cross-correlation coefficients are used for ground-

motion characterization and conditional hazard computations, respectively. These two studies 

use the same strong-motion database to develop the ground-motion predictive model and the 

correlations between the spectral ordinates. The site condition is fixed in all case studies and is 

represented by VS30 = 720 m/s. The size of coarse cells is chosen as 0.10.1 and they are 

refined by 44 fine scale cells at sites closer to the fault. 
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Figure 6. Comparisons of OpenQuake PGA hazard curves with those computed from in-house 

MatlabTM codes developed for running MC-based MSRFs technique. The site conditions are 

characterized by VS30 = 720m/s 

 

Figure 7. Distribution of Sa(3s) amplitudes for 475-year return period (a) without  and (b) with  

near-fault directivity effects. The fault segment is shown as a dark solid line on the plots. 

 

Figure 7 shows the influence of near-fault directivity effects on the distribution of 475-year 

return period spectral acceleration at T = 3.0s [Sa(3s)]. Figure 7a displays the distribution of 

Sa(3s) when the near-fault directivity effects are disregarded in the hazard assessment. The 

spectral amplitude distribution follows a uniform pattern attaining its maximum in the vicinity 

of entire fault length and decreases gradually towards distant sites from the fault. The spectral 

amplitude distribution in Figure 7b considers the directivity effects for the same case. The 

maximum spectral amplitudes are observed at the ends of the fault segment. They are 

approximately 20% to 25% larger with respect to those that disregard the forward directivity. 

The spectral amplitudes in the middle portion of the fault segment are smaller in Figure 7b 

when compared to the corresponding spectral values in Figure 7a. These observations 

emphasize the importance of site location with respect to fault orientation when near-fault 

effects are mapped on to the hazard. The spectral amplitude comparisons between Figures 9a 

and 9b suggest the insignificance of directivity effects for distances greater than 10 km from 

the fault segment. We note that these observations are confined to a specific source 

configuration and return period (i.e., 475-year return period). The influence of forward 

(a) (b) 
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directivity on spectral amplitudes increases for larger return periods and higher seismic activity 

(i.e., larger slip rates). 

 
Figure 8. Distribution of (a) Sa(1.0s) and Sa(1.0s)|Sa(3.0s) for 475-year return period. The fault 

segment is shown as dark solid line on the plots 

The left and right panels in Figure 8 display the significance of conditional hazard on dynamic 

GMIMs and how it is accounted for by MC-based MSRFs approach. The plots show the 

distributions of Sa(1.0s) (Figure 8.a) and Sa(1.0)|Sa(3s) (Figure 8.b) for 475-year return period. 

The distribution of Sa(1.0s) conditioned on Sa(3.0s) displays 10% to 15% lower spectral 

amplitudes with respect to the distribution of Sa(1.0s) at sites closer to the fault. Such spectral 

differences can be important for the design or performance assessment of high-rise buildings 

under the influence of higher mode effects. For example, Sa(1.0s)|Sa(3.0s) distribution could be 

important for a tall building of 3.0s fundamental period (T1) whose second mode (T2 = 1.0s) has 

a considerable effect on its dynamic response. To this end, the approach presented in this article 

would yield useful information for the spatial variation of such vector GMIMs for the 

probabilistic risk and loss assessment of geographically distributed building inventories (e.g., 

[37]). 

Figure 9 illustrates a more sophisticated case study in which the significance of spatial 

correlation (SC) and near-fault forward directivity (NF) effects is discussed for three spectral 

periods at three different locations relative to the fault segment (Figure 9.a). We consider a pair 

of sites at each location for spatial correlation effects. The pairs are closely spaced at locations 

2 and 3 whereas the separation distance between the sites at location 1 is larger. The chosen 

spectral ordinates represent very short-period (PGA-T = 0.0s; Figure 9.b), intermediate-period 

(T = 0.5s; Figure 9.c) and long-period (T = 3.0s; Figure 9.d) ground-motion demands. The 

comparative plots in Figure 9 suggest that consideration of spatial correlation has negligible 

influence at location 1 due to large separation distance between the sites. This observation 

particularly holds for very short period (Figure 9.b) and intermediate period (Figure 9.c) 

spectral ordinates. For longer periods (Figure 9.d), disregarding SC effects at location 1 yields 

slightly lower spectral amplitudes with respect to the case when this effect is considered. We 

note that the NF effects are insignificant for PGA as well as for Sa(0.5s) at all sites because they 

become effective after T = 0.6s in the Shahi and Baker [18] model. Disregarding spatial 

correlation has more pronounced effects for the 2nd and 3rd locations as the sites are closely 

spaced at these locations. Seismic hazard assessment that overlooks SC always underestimates 

spectral amplitudes that increases with increasing annual exceedance rate and spectral period. 

The consideration of NF effects has different implications for the three locations considered in 

(a) (b) 
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this study for periods shifting to longer spectral period bands (Figure 9.c). The NF effects are 

immaterial at the first location as it is far from the fault segment (~ 25 km). Consideration of 

NF effects amplifies Sa(3.0s) at location 3 and de-amplifies it at location 2. As discussed in 

Figure 7, the near-fault forward directivity effects are pronounced at the ends of the fault 

segments (e.g., location 3) and become minimum at the mid segment of the fault (e.g., location 

2). 

 

Figure 9. Effect of spatial correlation (SC) and near-fault forward directivity (NF) effects at 

three different locations for three spectral periods (a) Plan-view of locations, sites and the 

fault segment, (b) joint hazard curves for PGA, (c) joint hazard curves for Sa(0.5s), and (d) 

joint hazard curves for Sa(3s) 

 

5. CONCLUSION 

We present the implementation of MC-based simulation techniques for probabilistic hazard 

assessment of dynamic GMIMs. The MC-based simulations are incorporated with multi-scale 

random fields (MSRFs) approach to account for the spatial correlation, near-fault forward 

directivity and conditional hazard (cross-correlation) in the variation of dynamic intensity 

measures. Consideration of all these factors via conventional (integral) PSHA can be 

computationally challenging. The multi-scale random fields also provide flexibility for instant 

modification of intra-event aleatory variability whenever it is necessary (e.g., near-fault forward 

directivity effect).  

The theoretical aspects presented in the paper are validated by a limited number of case studies. 

These exercises suggest the reliability of our MC-based probabilistic hazard results when 

compared to their counterparts obtained from conventional PSHA. Other case studies showing 

the influence of near-fault directivity, spatial correlation and conditional hazard advocate that 

(a) (b) 

(c) (d) 
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each one of these complexities can effectively modify the hazard upon their deliberate 

implementation. In essence the MC-based techniques discussed in the paper provide flexibility 

to observe the effects of such specific features on hazard without running complicated 

probabilistic hazard integrals.   
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Figure 1. Graphical representation of coarse-scale and fine scale cells. The solid diagonal line is 

the fault. The area enclosing the fault segment is divided into m×n coarse-scale cells. Some of the 

coarse-scale cells are further refined into ds×ds fine scale cells. The right panel is the close-up 

view of 4 coarse scale cells located in the vicinity of the fault and, for illustration purposes, we 

show one of these coarse scale cells refined into 4×4 fine-scale cells 
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Figure 2. Illustrative example for intra-event residual sampling at coarse-scale level 
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Figure 3. Generation of intra-event residuals for fine-scale cells: (a) pre-selected coarse-scale 

cells for refining into fine-scale cells (designated by red boxes) and numbering of fine-scale 

cells in these coarse-scale cells, (b) sequential conditional simulation process 
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Figure 4. Algorithm for considering near-fault forward directivity effects on the spatially 

correlated GMIMs generated from MSRFs approach. lnGMIM,pulse is the calibrated mean 

GMIM in logarithmic space due to pulse-like ground motions (forward directivity). lnAF is 

the logarithmic calibration factor for forward directivity effects and lnGMIM,gm is the mean 

GMIM in logarithmic space computed from conventional GMPE. In a similar manner, 

lnGMIM,pulse and lnGMIM,gm are the calibrated and original standard deviations of conventional 

GMPE, respectively. Rf is the calibration factor for standard deviation for forward directivity 

effects. For non-pulse case, lnGMIM,nonpulse is the calibrated mean GMIM in logarithmic space 

due to non-pulse-like ground motions. lnAF and lnGMIM,nonpulse are the logarithmic calibration 

factor and standard deviation of GMPE for backward directivity effects, respectively. 
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Figure 5. Graphical illustration of conditional hazard assessment for one secondary GMIM
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Figure 6. Comparisons of OpenQuake PGA hazard curves with those computed from in-house 

MatlabTM codes developed for running MC-based MSRFs technique. The site conditions are 

characterized by VS30 = 720m/s 

 

 

Figure 7. Distribution of Sa(3s) amplitudes for 475-year return period (a) without  and (b) with  

near-fault directivity effects. The fault segment is shown as a dark solid line on the plots. 
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Figure 8. Distribution of (a) Sa(1.0s) and Sa(1.0s)|Sa(3.0s) for 475-year return period. The fault 

segment is shown as dark solid line on the plots 
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Figure 9. Effect of spatial correlation (SC) and near-fault forward directivity (NF) effects at 

three different locations for three spectral periods (a) Plan-view of locations, sites and the 

fault segment, (b) joint hazard curves for PGA, (c) joint hazard curves for Sa(0.5s), and (d) 

joint hazard curves for Sa(3s) 
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